

Deliverable D3.1

Initial Deep Learning Toolbox

Point of Contact Amos Storkey

Institution UEDIN

E-mail a.storkey@ed.ac.uk

Phone +44 131 651 1208

 Deliverable D3.1

 ii

Project Acronym BONSEYES

Project Title Platform for Open Development of Systems of Artificial Intelligence

Grant Agreement No. 732204

Topic H2020-ICT-2016 Smart Cyber-Physical Systems

Project start date 1 December 2016

Nature Report

Dissemination level Public

Due date M12

Date of delivery M14

Lead partner UEDIN

Contributing partners UCLM, ICCS, TCD

Authors Amos Storkey (UEDIN)

Reviewers Tim Llewellynn (NVISO)

This project has received funding from the European Union’s Horizon 2020 research and innovation programme

under grant agreement No 732204 (Bonseyes).

This work is supported by the Swiss State Secretariat for Education‚ Research and Innovation (SERI) under contract number 16.0159.

The opinions expressed and arguments employed herein do not necessarily reflect the official views of these funding bodies.

This document contains information that is treated as confidential and proprietary by
the Bonseyes Consortium. Neither this document nor the information contained herein
shall be used, duplicated or communicated by any means to any third party, in whole or
in parts, except with prior written consent of the Bonseyes Consortium.

 Deliverable D3.1

 iii

Revision History

Version Date Author Comment

0.1 10 Oct 2017 Amos Storkey First draft

0.2 15 December Second draft including partner contributions

 19. Jan 2017 Tim Llewellynn Review

1.0 19. Jan 2017 Peter Ulrich Final formatting, formal issues

 Deliverable D3.1

 iv

Contents

Abbreviations, Participant short names and Glossary v

Abbreviations v

Participant short names v

Glossary v

List of Tables vi
- vi

List of Figures vi
- vi

Summary 1
// Keep thi s line in pla ce. It is nee d to fi x a Wor d-bug in the T OC. 1

1. Introduction: Deep Learning Toolbox 2

2. Architecture Sensitive Deep-Learning Methods 3

2.1 Network Model Converters (UEDIN lead) 3

2.2 Efficient Implementations of Neural Network Computations (TCD lead) 4

2.2.1 Classic im2col Algorithm 4

2.2.2 Key takeaways 7

2.3 Analysis of model compression for network size reduction (UEDIN lead) 7

2.4 Plugins to LPDNN for efficient CPU use (ICCS lead) 9

3. Cost-Sensitive, Distributed and Transfer Learning Methods. 12

3.1 Exploiting characteristics of heterogeneous systems for DNN inference optimization (UEDIN lead) 12

3.2 Latency sensitive methods (UCLM lead) 14

3.3 Data Augmentation Generative Adversarial Networks (UEDIN Lead) 14

3.4 Parameter cost reduction in RNN and Embeddings (TCD lead) 15

References 16

 Deliverable D3.1

 v

Abbreviations, Participant short names and Glossary

Abbreviations

AI Artificial Intelligence

CPS Cyber-Physical Systems

LPDNN Low Power Deep Neural Network

Participant short names

NVISO nViso SA

UCLM Universidad de Castilla – La Mancha

TCD Trinity College Dublin

UEDIN University of Edinburgh

FHNW Fachhochschule Nordwestschweiz

TUM-Med Klinikum rechts der Isar der Technischen Universität München

ICCS Institute of Communication and Computer Systems

SYNYO Synyo GmbH

HES-SO Haute Ecole Spécialisée de Suisse Occidentale

ARM ARM Limited

ZFFNAG ZF Friedrichshafen AG

RTRK Institut RT-RK

SCIPROM SCIPROM Sàrl

BTH Blekinge Tekniska Högskola

Glossary

The Bonseyes glossary is available on https://www.bonseyes.com/glossary/.

https://www.bonseyes.com/glossary/

 Deliverable D3.1

 vi

List of Tables
-

Table 1: Summary of methods 7

List of Figures
-

Figure 1: Im2Col is the standard form for image representation in convolutional neural networks 4

Figure 2: Using a sum of scaled matrices to perform convolutions 5

Figure 3: GEMM-accumulating algorithm 6

Figure 4: The Grouped and Pointwise Block G(g) substitutes all full convolutions with a grouped followed
by pointwise convolution. A pointwsie Bottleneck can also be introduced to reduce parameters
further. 8

Figure 5: Test Error vs No. Parameters for student networks learnt with attention transfer on CIFAR-10.
The legend lists different compression families. 9

Figure 6: VGG-16 implementation in Caffe running on ARM big.LITTLE architecture (8 cores) 13

Figure 7: Comparison between hand coded version of VGG-16 and Caffe in OpenCL running on Odroid-
XU4 board (CPU+GPU). The baseline is the CPU version of Caffe with 1 thread. 13

Summary
// Keep thi s line in pla ce. It is nee d to fi x a Wor d-bug in the T OC.

The Deep Learning Toolbox is designed to enable users who have developed non-embedded deep learning
methods to transform those into methods and code that do work in embedded scenarios and can be
transformed to code that will run as effectively as possible on developer platforms. The toolbox is required
to work at many levels. First, it must provide implementations for standard deep learning models. Second it
must provide methods for transforming standard or provided deep learning models into models that are
more optimized for constrained systems, through an accuracy versus resource payoff that can be defined
by the user. The learning process for such models should be specified. Third it must transform a learnt
model into suitable code for constrained systems (this is a substantial effort – the code generator is shared
with WP4). Fourth it must be able to optimize the compilation of that code for heterogeneous platforms.

This document summarizes the methods, code and documentation developed as part of the initial
development of the Deep Learning toolbox. These methods include:

 Provision of hand-coded implementations of standard networks (alexnet, VGG networks, resnet) for
benchmarking against.

 Moonshine: a method for distillation of standard networks into considerably cheaper networks (in
memory and computation terms) with little loss of performance.

 Low Power Deep Neural Networks (LPDNN): a code generation suite, in development. LPDNN will
provide full code generation facility for the deep learning toolbox. At this stage it can generate a
number of standard networks, and do full equivalence verification. Equivalence verification is vital to
ensure that implemented networks do the same as those trained using some other framework: most
frameworks are incompatible with one another, for example in how they provide padding for
convolutions. We do this via an augmented Caffe network definition model.

 TriNNity: a toolbox of code generation components that choose optimal matrix handling structures for
full and sparse matrices. The TriNNity transformations have been tested on hand coded networks for
CPU implementations on different platforms. Optimal choices of matrix handling provide substantial
speed gains in CPU Neural Network implementation.

 CPU/GPU tests on a number of embedded devices that implement compile-time scheduler choices for
neural network implementation. Again such compile optimization can produce substantial difference in
performance.

 Data Augmentation Methods for generalising models to unseen domains.

Altogether substantial progress has been made at all levels of the toolbox. At this stage, the LPDNN needs
substantial further development; however a full pipeline of the development is now possible for any
network structure via a compiled Caffe implementation, and for select network structures via LPDNN.

 Deliverable D3.1

 2

1. Introduction: Deep Learning Toolbox

Deep Learning Toolbox: The method and tools developed in WP3 will contribute to open source projects
and provide, for the first time, open, componential deep learning tools for constrained architectures and
embedded systems. Data rich technologies, from on device speech recognition and translation, vehicle
warning, navigation and driving systems etc. rely on efficient and flexible machine learning. We will track
use and benefit as part of the deep learning toolbox, through a distributed reward system: as part of the
toolbox, we will assess the added value of individual components. Hence, we can and will not only assess,
and report, on how often components are used, feedback about that component, but also measured added
value from those components. In this section we summarise the primary goals on the 12 month deliverable
and what has been achieved against each of these. The core tool that is being developed is the Low Power
Deep Neural Network package (LPDNN), but other packages have also been released in their own right.

 Deliverable D3.1

 3

2. Architecture Sensitive Deep-Learning Methods

The following components are the primary targets from 3.1 Architecture Sensitive Deep-Learning Methods.

 Converters from CAFFE format to pytorch networks and vice versa (UEDIN)

Bidirectional converters from/to pytorch and tensorflow have been made and provided as part of
the LPDNN.

 Encapsulated structure for networks, data etc (NVISO)

The LPDNN includes a docker specification for network, network parameters, data etc. This enables
networks and data to be transactable quantities, which are fully specified and unambiguous. It also
provides a means of ensuring benchmarking tests are properly matched to an actual instantiation,
preventing a mismatch between the code and data used for a benchmark and that provided on a
marketplace.

 Definitions of standard networks in CAFFE format, along with a number of more efficient
implementations (TCD)

Since the LPDNN tooling supports Caffe models out of the box, we have focused our efforts on well-
known and widely used networks. In particular we have considered the performance of AlexNet,
VGG-B, VGG-C, VGG-E, and GoogleNet. TCD have developed many efficient implementations for
different sizes and shapes of convolutions, and have open-sourced our DNN primitive library
containing 70+ different convolution routines, including FFT and Winograd convolutions
(https://bitbucket.org/STG-TCD/trinnity).

 Standard Benchmarking tools for network performance, including robustness to input
degradations (UEDIN, TCD)

TCD have made publically available their benchmark suite for DNN inference, which includes
benchmarks of per-layer performance in AlexNet, VGG-B, VGG-C, VGG-E, and GoogleNet versus
Caffe (https://bitbucket.org/STG-TCD/trinnity-benchmarks). We plan to add more networks and
more competitors (e.g. TensorFlow) in the near future.

 Analysis of model compression methods for reduced bit depth and network size reduction
(UEDIN)

We detail the analysis of initial compression methods below. We find that significant compression
of standard networks in possible with only small reduction in performance.

 Plugins to LPDNN for efficient CPU use (ICCS)

2.1 Network Model Converters (UEDIN lead)

We anticipated it would be necessary to provide a way to convert models between different frameworks
during this project. Typically, we plan to work with a small set of reference architectures, and develop
methods on each of these. So, we developed a bridge between frameworks guaranteed to work with these
architectures. The current shortlist is:

 AlexNet
 GoogleNet
 Network in Network
 ResNet50
 VGG16
 SqueezeNet

All of these are famous architectures that can be trivially implemented in all major deep learning
frameworks; such as Tensorflow, Caffe, PyTorch etc. However, given a particular configuration of the

https://bitbucket.org/STG-TCD/trinnity

 Deliverable D3.1

 4

weights trained in any of these it is difficult to transfer that configuration to a different framework. Some
work has been done on making this easier, and there are some large industry pushes to this end, such as
ONNX. At this point, none of these solutions are applicable in our project.

Another approach to model conversion is to parse the code in each framework for the basic operations and
then rebuild a new computational graph automatically in the new framework. This produces model
definitions that are not useable.

We wanted a method that would provide uniform model definitions regardless of the framework, and to
have them defined ahead of time. We call the solution a bridge because it transparently moves the weights
back and forth between frameworks without changing the model definition.

The code is published in the Bonseyes bitbucket repository. It has been tested on the VGG16 architecture
and converts back and forth between Caffe and PyTorch. We are ready to extend it to test on the other
model definitions and provide a further bridge to Tensorflow, when this becomes a bottleneck during
research.

2.2 Efficient Implementations of Neural Network Computations (TCD lead)
A number of more efficient convolution algorithms have been designed and tested, these were published in
ASAP 2017 (http://ieeexplore.ieee.org/document/7995254) which provides further details. TCD have
extended the paper with more algorithms for publication in a Journal in 2018
(https://arxiv.org/abs/1709.03395).

2.2.1 Classic im2col Algorithm

The classic way that convolutional neural networks implement the convolutional processing is to organise
images column-wise in memory and do convolutions with this structure. This process is illustrated in Figure
1. Im2Col, as this organisation is called, needs lots of memory for the patch matrix: precisely C×H×W×K2
space, where C is the number of channels in a layer, and H and W are the height and width of a layer, and K
is the convolution size.

Figure 1: Im2Col is the standard form for image representation in convolutional neural networks

For a deep learning toolbox, it is critical that we find another algorithm for convolution that

 Uses GEMM to achieve high speeds
 Does not build a patch matrix

https://research.fb.com/facebook-and-microsoft-introduce-new-open-ecosystem-for-interchangeable-ai-frameworks/
http://ieeexplore.ieee.org/document/7995254
https://arxiv.org/abs/1709.03395

 Deliverable D3.1

 5

In this work, a family of new GEMM-based algorithms is proposed, that are based on sums of convolutions,
and do not need a patch matrix. Figure 2 illustrates one approach for achieving this via a sum of scaled
matrix method. The figure illustrates the fundamental differences between the in-memory organisation of
this approach. In addition the use of matrix operations enables optimized standard generalised matrix
libraries to be used.

Figure 2: Using a sum of scaled matrices to perform convolutions

We can extend our sum of scaled matrices algorithm to input with multiple channels by

 Replacing matrix scaling with 1x1 DNN convolution
 Computing KxK DNN convolution as the sum of K^2 1x1 DNN convolutions
 Implementing 1x1 DNN convolution with matrix-matrix multiplication (GEMM)

The result of this is that no extra patch matrices needed. The primary downside is that there would be
more GEMM calls

 We do K^2 GEMM calls versus just one GEMM call for im2col
 Output matrix size increases K^2-fold

 Deliverable D3.1

 6

Figure 3: GEMM-accumulating algorithm

Various things are worth noting about this approach, illustrated in Figure 3.

 BLAS GEMM is already an accumulating algorithm

 Takes an optional matrix parameter to accumulate to
 So we can do the accumulation as part of the GEMM call
 Potentially faster than a post-pass loop

 There are significant complications

 We shift the result matrices when accumulating
 How should we manage pixels at the boundaries of images?

 Convolutions stop at the edge of images

 All convolution algorithms deal with boundaries as special cases
 But we are building our sum of 1x1 convolutions with GEMM

 We are misusing the GEMM accumulate

 At boundaries we spill into and over-write the next row
 Lots of wrong values in results matrix

 Two strategies

 Post-pass fix-up of values
 Dynamically modify input matrix with carefully-placed zeros

We can summarise the requirements of each of these methods in the following Table 1:

 Deliverable D3.1

 7

Table 1: Summary of methods

2.2.2 Key takeaways

We can choose between input-explosion, output-explosion, or compromise for each layer of the network

 Use compromise when input is large and output is large (early in net)
 Use output explosion when input is large and output is small (middle of net)
 Use input explosion when output is large and input is small (late in net)

 DNN convolution can leverage optimized GEMMs libraries
 Im2col is fast but needs lots of extra space
 Our GEMM-accumulating approach offers

 Similar performance
 At a fraction of the additional space

 To find out more

 A. Anderson, A. Vasudevan, C. Keane and D. Gregg. Low-memory GEMM-based convolution
algorithms for deep neural networks. arXiv:1709.03395v1

 Code open sourced on bitbucket

2.3 Analysis of model compression for network size reduction (UEDIN lead)

We have explored methods to reduce the parameter cost of neural networks while keeping their
performance intact. For this, we devised a simple strategy where one transforms a standard network by
replacing its convolutional blocks with cheaper, low-parameter alternatives. This requires no architectural
change to the original network. We show that when these smaller networks are trained using distillation
techniques they are able to perform similarly well to the original network with a significant reduction in
parameters, and outperform reduced architectures with standard convolutional blocks.

Our cheap replacement blocks utilise a combination of (i) splitting each full convolution kernel into a set of
smaller, grouped convolutions and (ii) contracting the number of channels a convolution is performed
across through a bottleneck.

 Deliverable D3.1

 8

Figure 4 illustrates the G and BG blocks we have designed for this purpose.

Figure 4: The Grouped and Pointwise Block G(g) substitutes all full convolutions with a grouped followed by
pointwise convolution. A pointwsie Bottleneck can also be introduced to reduce parameters further.

Trained from scratch, networks with these cheaper blocks perform markedly worse than the original.
However, modern distillation methods (particularly attention transfer) allow us to use the original network
as a teacher to aid in the training of a student network with cheap convolutions.

We train a multitude of student networks with different blocks on the CIFAR-10 image classification
dataset. The performance on the test set vs. parameter cost for each network is shown in Figure 5. The
original (teacher) network is also shown on this plot. It is clear that all the networks with cheap
convolutions outperform standard networks with an equivalent number of parameters.

Some of the results are remarkable: G(N/8) has an error very close to that of the teacher but has just over a
fifth of the total parameters. BG(2,M/8) has less than a tenth of the parameters of the teacher for a cost of
just over a percent error.

 Deliverable D3.1

 9

Figure 5: Test Error vs No. Parameters for student networks learnt with attention transfer on CIFAR-10. The legend
lists different compression families.

The paper for this work is available on arXiv https://arxiv.org/abs/1711.02613. The source code is available
on github for the consortium and will be later be made public.

2.4 Plugins to LPDNN for efficient CPU use (ICCS lead)
We have introduced two new plugins to the Low-Power Deep Neural Network (LPDNN) inference engine
that is being developed within the Bonseyes project. The first plugin includes the integration of the high-
performance NNPACK acceleration package for Neural Network computations, which is publicly available
here and is optimised for ARMv7 processors with the NEON instruction set, ARMv8 (AArch64) processors
and x86-64 processors with the AVX2 instruction set. Since the hardware platforms that will be used for
Bonseyes’ demonstrators will include ARMv8 processors, it seemed fruitful to incorporate this acceleration
package within LPDNN. The second plugin includes multiple implementations of sparse convolutional and
fully-connected layers, which can be used to compress the model representation in memory when the
model has been pruned with techniques that introduce unstructured sparsity in the model. The
implementations follow the typical approach of lowering the tensors involved in the respective
computations to matrices and rely on standard sparse BLAS routines, including the sparse matrix - dense
matrix multiplication for the convolutional layer and the sparse matrix - dense vector multiplication for the
fully-connected layer. In the convolutional layer, the original K × C × HK × WK 4D weight tensor is lowered
into a K × CHKWK 2D matrix, while the original C × Hin × Win 3D input activation tensor is lowered into a 2D
CHKWK × HinWin matrix. A multiplication of the lowered sparse weight matrix with the lowered dense input
matrix is performed and the resulting matrix can be directly used by the subsequent layer without any
modification. We have currently experimented with the sparse BLAS routines available in the Intel MKL
library for x86 architectures. The sparse weight matrix is represented with either one of the de facto

https://arxiv.org/abs/1711.02613
https://github.com/Maratyszcza/NNPACK

 Deliverable D3.1

 10

standard sparse matrix storage formats, including the Coordinate (COO), Compressed Sparse Row (CSR) and
Compressed Sparse Column (CSC) formats. Even though these are not state-of-the-art formats for sparse
matrix computations, they are useful for an initial evaluation. In our initial experiments we have tested
single-threaded performance of the sparse layer implementations using multiple sparsity levels on an Intel
Pentium T3400 CPU, and compared them to the corresponding dense implementations. Specifically, we
benchmark the following implementations:

 Convolutional layer:
 Im2Col lowering + dense × dense matrix multiply (BLAS, Intel MKL)
 Im2Col lowering + sparse × dense matrix multiply (sparse BLAS, Intel MKL)

 Using the COO format for the sparse matrix
 Using the CSR format for the sparse matrix

 Direct sparse, i.e., no transformation to the input activation tensor (hand-written)
 Using the CSR format for the sparse matrix

 Fully-connected layer:
 dense matrix × dense vector multiply (BLAS, Intel MKL)
 sparse matrix × dense vector multiply (sparse BLAS, Intel MKL)

 Using the COO format for the sparse matrix
 Using the CSR format for the sparse matrix

We test the third convolutional (“conv3”) and the first fully-connected (“fc6”) layer of the AlexNet network
with increasing sparsity levels in the range {60-90}%, i.e., 60-90% of the weights are zero.

Relative performance over Im2Col + dense-gemm

sparse-gemm-coo sparse-gemm-csr sparse-direct-csr

alexnet_conv3_60% 0.162 0.164 0.158

alexnet_conv3_70% 0.219 0.221 0.207

alexnet_conv3_80% 0.324 0.333 0.311

alexnet_conv3_90% 0.657 0.657 0.605

Relative performance over dense-gemv

alexnet_fc6_60% 0.527 1.195

alexnet_fc6_70% 0.690 1.581

alexnet_fc6_80% 1.043 2.333

alexnet_fc6_90% 2.130 4.900

 sparse matrix format
compression ratio

sparsity level (%) COO CSR

60 0.83 1.25

70 1.11 1.66

80 1.66 2.49

90 3.33 4.99

Concerning the sparse convolutional layer, we notice that no execution time speedups are gained through
sparsity using either of the evaluated implementations. However, this is a limitation of the specific
implementations, which are not optimal (GEMM-based implementations of Intel MKL) or optimised (direct
hand-written implementation). The performance gap can be significantly reduced through extensive
optimizations that can be found in the literature and are currently work in progress. Some useful

 Deliverable D3.1

 11

observations can be made, however, even with these initial results. First, concerning the sparse GEMM-
based implementations, we see no performance difference between the two sparse matrix storage
formats, even though the CSR format achieves higher compression ratios. This is because the sparse ×
dense matrix multiply is a compute-bound kernel and, thus, it does not benefit from data compression. It
will actually benefit from optimizations that are typically used to optimise dense matrix multiply, e.g. cache
blocking, tiling, etc. Also, one should notice that the direct sparse implementation achieves similar
performance to the sparse GEMM-based ones, without requiring additional memory for lowering the input
activation tensor. Concerning the fully-connected layer, here the sparse implementations are quite efficient
even for low sparsity levels. This is due to the fact that the sparse matrix dense vector multiplication kernel
is a memory-bandwidth-bound kernel and, thus, benefits from data compression techniques. Since the
execution time of the majority of convolutional neural networks is dominated by the convolutional layers,
the focus of our current work is on providing high-performance sparse implementations for these layers.

 Deliverable D3.1

 12

3. Cost-Sensitive, Distributed and Transfer Learning Methods.

The following components are the primary targets for 3.2 Cost-Sensitive, Distributed and Transfer Learning
Methods.

 Bayesian optimization of model compression against cost/constraints (UEDIN). Joint optimization
of compiler options and network options (TCD, UEDIN)

The within component optimization sits within the inner loop of the hyper-parameter search that was
used for the analysis of compression in WP1. It needs to be developed further for the full pipeline joint
optimization of models and compile-options that forms part of the Full Deep Learning Toolbox.

 Benefit assessment of particular network elements or transformations to enhance suitability for
embedded devices (TCD)

Half of the experimentation in TCDs forthcoming CGO 2018 paper concerns the ARM Cortex A-57
processor, which is present in many embedded and automotive development kits, such as the NVIDIA
Jetson TX1. They assessed the suitability of over 70 different convolution algorithms for inference on
this embedded processor, in both single-threaded and multi-threaded execution modes.

 Benchmarking of hand coded versus generated network code (UEDIN, TCD)

Two benchmarking suites have been developed by the two partners. The first targets network
decisions, used in producing the Pareto curves in Figure 5. This involves systematic efficient hyper-
parameter search for each possible compression option and network size. The second publicly released
benchmark suite works at the lower level and contains a number of hand coded strategies for network
implementations, which we benchmark against an optimal arrangement produced from a PBQP solver
(https://bitbucket.org/STG-TCD/trinnity-benchmarks). We have also benchmark standard Caffe
developments and hand-coded versions of VGG-16 for CPU (OpenMP) and CPU+GPU (OpenCL) for
comparison purposes and to give a point of reference for the performance of our generated network
code.

 Learning approaches for ensuring robustness against changes at deployment.

We have developed a novel Generative Adversarial Mechanism for augmenting small data availability in
a deployment domain. This effectively associates data points with whole manifolds, and enables much
more data-efficient learning methods. It gives state of the art performance on one-shot learning tasks
and for data augmentation.

3.1 Exploiting characteristics of heterogeneous systems for DNN inference
optimization (UEDIN lead)

We investigated the limitations of some deep learning frameworks on heterogeneous systems and
identified key points for improvement on top of OpenCL.

We explored the popular methods employed to achieve parallelism in the widely used deep learning
frameworks (Caffe, TensorFlow), which can be utilised on heterogeneous systems (multi-core CPU, GPU).
Our first observation is that parallelism is achieved naively by current frameworks. Plotting the inference
time of VGG-16 with Caffe on an ARM big.LITTLE architecture (Cortex A15 Quad + A7 Quad), we can see
(Figure 6) that parallelism is beneficial only when cores are of the same characteristic (1-4) on the “big”
architecture.

Adding an additional core with the “LITTLE” architecture has the effect of penalising the inference time by
60% instead of contributing to speedup. This clearly indicates that current deep learning frameworks are
designed for uniform computation splits, more common on larger platforms (servers), and not very useful
on systems with heterogeneous computation resources.

 Deliverable D3.1

 13

Figure 6: VGG-16 implementation in Caffe running on ARM big.LITTLE architecture (8 cores)

On the other hand, if we observe (Figure 7) the inference time of our implementation of VGG-16 on the
same big.LITTLE architecture, we see how the speedup increases as we increase the number of threads
(cores). The reason for this is the finer granularity of the threads created in our implementation. It is
important to notice that values in Figure 7 are normalised to the first column in Figure 6 (that is, 1 core),
which is a way of comparing the performance of both implementations of VGG-16. Based on that, we see
that our implementation provides much slower inference times, but the comparison is not completely fair,
as our current version is not yet using any BLAS (Basic Linear Algebra Subprograms) library, while Caffe
does. Therefore, there is a clear scope for better results when we adopt the BLAS operations available in
common libraries.

Figure 7: Comparison between hand coded version of VGG-16 and Caffe in OpenCL running on Odroid-XU4 board
(CPU+GPU). The baseline is the CPU version of Caffe with 1 thread.

In summary, to address the previous limitations/observations we aim to split workloads in chunks that
adequately fit specific hardware characteristics. For this, we identified a set of parameters that
immediately impact the OpenCL kernel workload. Considering these parameters is essential to calibrating
the workload and avoiding synchronisation penalties. These observations feed directly into the OpenCL task
scheduler we are developing.

 Deliverable D3.1

 14

3.2 Latency sensitive methods (UCLM lead)
Even with optimizations, deep learning inference in embedded systems can still take too long. From our
experience with embedded systems, in some cases inference can take >1s per image. This means that the
input may change while inference is still being computed. A change in the input can in that case >2s to be
reflected in the output (worst-case). Such latencies are not tolerable and in fact may render the application
useless. We will focus on an scenario of a continuous recognition task (some of which appear in the project
demonstrators), in which the system’s decision must be given within a limited time.

In this context, methods will be developed that, based on observation of changes in input (and/or possibly
in first computed layers), can stop inference as early as possible. Obviously, inference should be done only
when we know that the current output may change. A very simple example of this is in the problem of
facial emotion recognition. If the mouth and eyes regions have not changed “significantly” from previous
frame, we should not attempt inference. That is a check at the signal level, although we can also think of a
check at a more “semantic” level (i.e. from within the first layers of the network itself).

In the context of inference acceleration, multiple alternatives and solutions have been proposed. In the
following we give a non-exhaustive taxonomy:

Computational:

 Caches
 Parallel or otherwise specialized resource allocation/mapping
 Bit precision reduction
 Sparsity

 “Semantic”:
 Early stopping (e.g. BranchyNet). Stop at a layer when confidence may be enough
 Paced layer execution (e.g. clockwork convnets). Different layers are updated according to their

semantic stability

The methods that will be explored here pertain to the second category. We envision methods that provide
the developer with a trade-off between reduced latency and accuracy. Other constraints (memory, for
example) will not be considered at first. The methods will be first prototyped using flexible frameworks and
environments (Matlab or similar) and then implemented in the context of a mainstream deep learning
framework.

3.3 Data Augmentation Generative Adversarial Networks (UEDIN Lead)

One fundamental issue in deep learning for embedded systems is that they are deployed in changing
environments. The scenarios that methods are used in vary, and do not necessarily match the training
scenario. It is vital to develop approaches that are robust to these changes.

One setting that provides and abstract environment for this is the k-shot learning setting: we need to learn
from a variety of related training environments how to do well in a previously unseen test environment for
which we have little data. We tackle this approach via a mixture of supervised and unsupervised learning
methods, where the unsupervised method captures the effective class-equivalent manifolds for each data
point. Hence this can be applied to new settings with little data.

In this work we demonstrate a novel Generative Adversarial Network (GAN) training setup with which one
can use an existing GAN framework (i.e. WGAN GP or Standard GAN) to learn to one-shot generate
plausible augmentations of data samples using data-learnt augmentations. Intuitively the model learns a
manifold around a data point within which a sample remains in the same class. Furthermore the concept of
class is extracted directly from the image pairs passed to the discriminator and implicitly learned by the
Generator network as a result of backpropagation. The definition of the classes themselves is learned
implicitly by the GAN based on the provided image pairs with which the discriminator is trained. More
specifically the discriminator is either presented two images from the same class but that are not the same

 Deliverable D3.1

 15

sample or the GAN conditional input and the GAN output, thus implicitly pushing the GAN to learn to
augment the conditional input image such that it remains in the same class, but it is different enough to be
considered a separate sample. One of the novelties of this Data Augmentation technique using GANs is that
at generation time you are not restricted by the classes you have already learned (i.e. No Labels are passed
to the generator) rather the generator can one shot generate from unseen-class data points. We call this
form of GAN a Data Augmentation Generative Adversarial Network or DAGAN.

We evaluate the DAGAN in a number of ways. One way we can use it is to augment one-shot learning
methods using pixel distance and matching networks as well as to augment vanilla classification. In all cases
we can see improvements over the state-of-the-art baselines. The current preprint of this work is available
at https://arxiv.org/abs/1711.04340.

3.4 Parameter cost reduction in RNN and Embeddings (TCD lead)
Image captioning and video captioning are more challenging tasks than object recognition in single images.
The difference is that captioning models generate natural language sentences other than single object
labels. Recurrent neural networks are typically leveraged in word sequence generation. In this case, one
captioning model incorporates a CNN model and a RNN model. A NeuralTalk [1] model can have 90 million
parameters and the DenseCap [2] model is even bigger. We are working toward parameter reduction in an
integrated model of CNN and RNN, with emphasis on RNN and Embedding representations.

In the NeuralTalk model convolutional features of visual regions are mapped to a h-dimensional
embedding. On the other hand, the word sequence embedding is encoded by Bidirectional RNN and the
embedding is also in h-dimension. The objective function evaluates the alignment of image region to
sentence and vice versa. DenseCap [2] dropped the visual region proposal network of NeuralTalk and a fully
convolutional localization layer was applied to locate region features from convolutional features.
DenseCap was trained with VisualGenome which covers much richer annotation data. In NeuralTalk, word
embeddings are in dense vectors with 300 dimensions. In order to train a more portable captioning model,
alternative embedding representations and RNN parameter reduction are necessary. Candidate approaches
of model compression include:

Quantization - Reduced precision arithmetic has been applied in deep CNN and it achieved comparable
classification accuracy as original models. However, quantization degrades RNN performance in many trials.
He et al. [3] introduced robust RNN quantization approaches. Currently we are conservative to keep 32-bit
precision for the NeuralTalk model, where the embedding and score ranking steps in a captioning model
prefer high precision.

Sparsity - Narang et al. [4] applied weight pruning during RNN training and generated sparse model. RNN
model size is reduced by 8X. Chen et al. [5] proposed sparse word representations over dense vectors of
word embeddings. Rare words are represented by sparse linear combination of common words.

Rank reduction - A SVD rank reduction approach was introduced for RNN and MGRU (Cox [6]).

Knowledge distillation - As introduced by Hinton et al. [7], a student model can be distilled from a teacher
model through softmax output matching. The student model can be smaller in size and help deployment.
Distillation has been applied in classification models. On the other hand, word embedding models are also
suitable for dimension reduction. Mou et al. [8] indicated two distillation approaches for embeddings:
matching softmax and encoding embeddings. A distilled word embedding model can be applied inline with
image captioning.

We work with available model compression approaches on RNN and embeddings for captioning tasks and
also explore new methods.

https://arxiv.org/abs/1711.04340

 Deliverable D3.1

 16

References

[1] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 39(4):664–676, April 2017.
[2] J. Johnson, A. Karpathy, and L. Fei-Fei. DenseCap: Fully Convolutional Localization Networks for Dense
Captioning. ArXiv:1511.07571, November 2015.
[3] Q. He, H. Wen, S. Zhou, Y. Wu, C. Yao, X. Zhou and Y. Zou. Effective Quantization Methods for Recurrent
Neural Networks. ArXiv:1611.10176, November 2016.
[4] S. Narang, E. Elsen, G. Diamos and S. Sengupta. Exploring Sparsity in Recurrent Neural Networks.
ArXiv:1704.05119, April 2017.
[5] Y. Chen, L. Mou, Y. Xu, G. Li and Z. Jin. Compressing Neural Language Models by Sparse Word
Representations. ArXiv:1610.03950, October 2016.
[6] J. Cox. Parameter Compression of Recurrent Neural Networks and Degradation of Short-term Memory.
ArXiv:1612.00891, December 2016.
[7] G. Hinton, O. Vinyals and J. Dean. Distilling the Knowledge in a Neural Network. ArXiv:1503.02531,
March 2015.
[8] L. Mou, R. Jia, Y. Xu, G. Li, L. Zhang and Z. Jin. Distilling Word Embeddings: An Encoding Approach.
ArXiv:1506.04488, June 2015.

